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Figure 1 An overview of research advances in site-specific glycoproteomics over the past two decades
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Figure 2 Summary of glycopeptide enrichment methods
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Table 1 Summary of software tool features for complete glycopeptide resolution
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Figure 3 Efficient mass spectrometry analytical workflows and data interpretation tools for glycoproteomic analysis at intact glycopeptide-level.

Some of the graph elements in sample preparation and enrichment in this figure, including cells and tubes, are quoted from the GDP material library

[100].

the color mass spectrometry diagrams in the mass spectrometry analysis process and data parsing are modified from ref. [19], and the graph elements of
the Deep Learning module in data parsing are extracted from ref. [20], under Creative Common Attribution 4.0 International License
(https://creativecommons.org/licenses/by/4.0/); graph elements in the result analysis were generated by the GlycoAP platform

(https://project.omicsolution.com/GlycAP/).
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Glycosylation is one of the most intricate and variable post-translational modifications (PTMs), playing a pivotal role in
various biological processes such as cell signaling, immune response, protein folding, and molecular recognition. The
dynamic and diverse nature of glycosylation makes it an essential modification in cellular function and organismal
development, as well as in disease progression. Glycoproteomics has emerged as a core field that enables the in-depth
analysis of glycoproteins, providing valuable insights into the glycosylation sites and the underlying glycan structures. This
is particularly important for understanding how changes in glycosylation patterns are linked to disease states, such as
cancer, autoimmune disorders, and neurodegenerative diseases.

Over the past two decades, significant advancements in mass spectrometry (MS)-based glycoproteomics have
revolutionized the study of protein glycosylation. Initially, the identification of glycosylation sites was primarily based on
peptide mapping techniques. However, the field has evolved to focus on the analysis of intact glycopeptides, which
preserve both the peptide backbone and the attached glycans, providing a more complete view of glycosylation. The
development of cutting-edge MS technologies has enabled researchers to detect and characterize a wide variety of
glycopeptides with high sensitivity and specificity. These advancements have allowed for the identification of
glycosylation sites at unprecedented levels of detail, unveiling complex glycan structures and modifications that were
previously difficult to study.

One of the key developments in glycoproteomics has been the enhancement of glycopeptide enrichment methods, which
facilitate the isolation of glycosylated peptides from complex biological samples. These techniques, such as lectin affinity
chromatography and hydrophilic interaction liquid chromatography (HILIC), have significantly improved the sensitivity
and throughput of glycoproteomics analyses. In parallel, advances in mass spectrometry analytical strategies, including
high-resolution MS and tandem MS (MS/MS), have provided deeper insights into glycopeptide fragmentation patterns,
allowing for the determination of site-specific glycosylation of glycoproteins.

Despite these advancements, several challenges remain in glycoproteomics, such as the need for improved analytical
depth and reproducibility, the complexity of glycan structures, and the incomplete characterization of low-abundance
glycosylated proteins. Furthermore, data interpretation tools and glycan databases are still evolving to keep pace with the
growing complexity of glycosylation data. Looking ahead, the future of glycoproteomics will likely involve the
development of more accurate, high-throughput methods for glycoprotein analysis, the integration of multi-omics
approaches, and the application of glycoproteomics in personalized medicine, particularly for the discovery of biomarkers
and therapeutic targets in disease.

glycoproteomics, site-specific glycosylation analysis, identification and quantification of intact glycopeptides, mass
spectrometry analysis
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