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Abstract: With the rise of 5G networks, electromagnetic radiation and interference issues are becoming

increasingly prominent, so the development of effective electromagnetic shielding materials is particularly urgent.

Compared with the high cost, high density, difficult processing, easy corrosion and many other limitations of

traditional metal-based electromagnetic shielding materials, polymer-based electromagnetic shielding composites

have attracted much attention due to their excellent properties such as low density, corrosion resistance and easy

processing. The construction of heterogeneous structures such as isolation structure, porous structure and layered
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structure can induce the orientation distribution of conductive fillers, so that polymer-based electromagnetic
shielding composites can obtain excellent conductivity at low filler content, thereby improving their shielding
performance. Based on this, this paper reviews the current research progress of polymer-based electromagnetic
shielding composites with heterogeneous structures, focusing on the construction strategy and preparation
technology of heterogeneous structures and their influence on electromagnetic shielding performance. Finally,
prospects for the future development of polymer-based electromagnetic shielding composites with heterogeneous
structures are proposed. This work has guiding significance for improving the performance of polymer-based

electromagnetic shielding composites and the development of their applications in communications, smart
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wearables, aerospace and other fields.

Keywords: polymer-based composites; electromagnetic shielding; heterogeneous structures; segregated

structure; porous structure; layered structure; fabrication technology
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composite materials’®?; (b) Preparation process and microstructure of
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composite materials’®!; (d) Preparation process of polyketone (POK)/
poly(vinylidene fluoride) (PVDF)/multi-walled carbon nanotubes
(MWCNTSs) composite materials'*’; () Schematic diagram of phase
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Fig.2 (a) Electromagnetic shielding mechanism, microstructure,
comprehensive strength, and shielding effectiveness of epoxy/reduced
graphene oxide/Ni-chains (EP/rGO/Ni-chain) composite materials’®’;
(b) Selective distribution of MWCNTs in PVDF/poly(lactic acid) (PLA)
mixture, electromagnetic shielding mechanism®"; (c) Microstructure,
and shielding effectiveness of EP/reduced graphene oxide with
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Fig.4 (a) Microstructure, electromagnetic shielding mechanism, and
shielding effectiveness of PVDF layered foam/film composite!®;

(b) Preparation process, microstructure, electromagnetic shielding
mechanism, and shielding effectiveness of TPU/CNTs/Fe;0,@rGO
composite materials®; (c) Preparation process, microstructure, and
shielding effectiveness of PCNF@LPG layered film composite”;

(d) Preparation process, microstructure, electromagnetic shielding
mechanism, and shielding effectiveness of silicone rubber composite
foam'®?; (e) Preparation process, microstructure, and electromagnetic
shielding mechanism of -tGO@Fe;0,/tetraneedle-like ZnO
(T-Zn0)/Ag/WPU film composite materials'®”
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