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Abstract With the development of integrated circuit technology to the 3 nm node, Moore’s law approaches
its physical limits, and the chip process faces the theoretical bottlenecks including materials and devices.
Two-dimensional information materials by virtue of atomic layer thickness, low power consumption and
other advantages are considered to be the core materials of 1 nm and below nodes and to help the chip
process to advance Moore’s law continually, being closely related to the long-term planning of advanced
manufacture process of integrated circuits in China. Based on the discussions and the proposals from the
343" Shuangqing Forum, this paper reviews the development history of two-dimensional information
materials and devices from the perspective of material-device-heterogeneous integrations. Furthermore,
this paper also gives a discussion about the major key issues and challenges in this field in the next 5 ~10
years as well as the potential frontier research directions recommended to National Natural Science

Foundation of China for funding.
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