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Figure 1 (Color online) Mainstream technology path for ammonia synthesis. (a) Mainstream methods of green ammonia synthesis'"*); (b) schematic
diagram of ammonia production by nitrate/nitrite and direct nitrogen electrocatalytic reduction!®*!
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Figure 2 (Color online) Idea map for this work



B3 BTmARZIE. (a) [BFs7; (b) [TfO]7; (¢) [TFSI];
(d) [Emim]+; (e) [Hmim]*; H [Dmim]*; (2) [P2228]+; (h) [P666(l4)]+- e
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Figure 3 Molecular structure diagram. (a) [BF4]7; (b) [TfO] ;
(c) [TESI]™; (d) [Emim]’; (¢) [Hmim]; (f) [Dmim]’; (g) [Paxs]'s
(h) [Pess4)] - Revised according to the Ref. [39]
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Figure 4 (Color online) Influence of ionic liquids structure on N, solubility. (a) Solubility of N, in different ionic liquids®>. (b)—(e) Schematic
diagram of the interaction of ionic liquid with N,!'"!
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Figure 5 (Color online) Comparison of the effect of catalyst differences on the catalytic activity of ammonia synthesis. Volcano of hydrogen evolution
reaction (blue) and nitrogen reduction (black) reactions on metal (111) surface (a) and (211) surface (b)le!
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Figure 6 (Color online) Optimisation of electrochemical reaction media by ionic liquids. (a) Relationship between ionic liquid addition ratio and
ammonia yield rate and Faradaic efficiency'®”); (b) Relationship between ammonia yield rate and faradaic efficiency in an electrolyte containing

0.1 mol L™ [P666(14)][eFAP][73]; (c) Schematic diagram of the role of ionic liquids in the ammonia synthesis process
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Ammonia is a versatile compound that has recently attracted considerable interest as a green hydrogen energy carrier. The
ability of ammonia to efficiently store and transport hydrogen, which is essential for the development of sustainable energy
systems, makes ammonia’s potential in this field enormous. The conventional method of ammonia synthesis, namely the
Haber-Bosch process, is energy intensive, relies on fossil fuels, and results in significant carbon emissions. In contrast,
electrochemical ammonia synthesis offers a promising alternative that can utilize renewable energy sources, thereby
reducing environmental impact and enabling decentralized production.

Electrochemical ammonia synthesis is based on the principle of using electricity to drive chemical reactions to synthesize
ammonia from hydrogen and nitrogen or nitrate. This method offers the potential for significant energy savings and carbon
emission reductions compared to the Haber-Bosch process. In addition, it can be combined with technologies such as
thermal and photovoltaic, thereby facilitating a more sustainable and flexible ammonia production infrastructure. However,
the electrochemical ammonia synthesis approach faces significant challenges that hinder its practical application and
industrialization.

One of the main difficulties in the electrochemical synthesis of ammonia is the inherent inertness of the nitrogen
molecule, which requires considerable energy to break its strong triple bonds. This property of nitrogen makes the
electrochemical reduction process complex and inefficient. In addition, the electrochemical reduction process suffers from
many side reactions that compete with the desired ammonia synthesis reaction. These side reactions not only cause
unnecessary energy loss, but also reduce the overall efficiency and yield of ammonia production. Currently, the relatively
low ammonia production rates and Faraday efficiencies achieved through electrochemical ammonia synthesis make the
process inadequate for large-scale industrial applications. Addressing these issues is critical to advancing electrochemical
ammonia synthesis as a viable alternative to traditional ammonia synthesis methods.

This review focuses on the role of ionic liquids (IL) in improving the efficiency of electrochemical ammonia synthesis.
ILs have unique properties that can be used to enhance the performance of electrochemical ammonia synthesis, including
high ionic conductivity, low volatility, and high nitrogen solubility. This review explores how different types of ionic
liquids can improve the efficiency of ammonia synthesis through three primary mechanisms. Firstly, IL can increase the
solubility of nitrogen in solution, providing more nitrogen for the reduction reaction. Secondly, they can modulate the
behavior of the catalyst in the electrolyte system, optimizing the reaction environment and increasing catalytic activity.
Finally, by utilizing IL to adjust the internal environment of the electrolyte system, researchers can achieve more efficient
nitrogen reduction and higher ammonia yields.

In addition, the review suggests future research directions to overcome the limitations of current electrochemical
ammonia synthesis. These directions include developing functionalized IL to enhance nitrogen solubility, studying new
catalyst materials that work in concert with IL, and optimizing the electrolyte to maximize ammonia productivity and
efficiency.

In summary, while electrochemical ammonia synthesis offers a promising pathway toward sustainable and decentralized
ammonia production, significant challenges remain. The application of IL provides a potential pathway to address these
challenges and improve the efficiency of the electrochemical ammonia synthesis process. Continued research in this area is
essential to realize the potential of electrochemical ammonia synthesis and contribute to the development of a greener and
more sustainable hydrogen economy.

ionic liquid, electrocatalysis, ammonia synthesis, interface modification
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